3.9 \(\int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=194 \[ -\frac{2 a^2 (5 A+4 C) \sin ^3(c+d x)}{15 d}+\frac{2 a^2 (5 A+4 C) \sin (c+d x)}{5 d}+\frac{a^2 (10 A+9 C) \sin (c+d x) \cos ^3(c+d x)}{40 d}+\frac{a^2 (14 A+11 C) \sin (c+d x) \cos (c+d x)}{16 d}+\frac{1}{16} a^2 x (14 A+11 C)+\frac{C \sin (c+d x) \cos ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{15 d}+\frac{C \sin (c+d x) \cos ^3(c+d x) (a \cos (c+d x)+a)^2}{6 d} \]

[Out]

(a^2*(14*A + 11*C)*x)/16 + (2*a^2*(5*A + 4*C)*Sin[c + d*x])/(5*d) + (a^2*(14*A + 11*C)*Cos[c + d*x]*Sin[c + d*
x])/(16*d) + (a^2*(10*A + 9*C)*Cos[c + d*x]^3*Sin[c + d*x])/(40*d) + (C*Cos[c + d*x]^3*(a + a*Cos[c + d*x])^2*
Sin[c + d*x])/(6*d) + (C*Cos[c + d*x]^3*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(15*d) - (2*a^2*(5*A + 4*C)*Sin
[c + d*x]^3)/(15*d)

________________________________________________________________________________________

Rubi [A]  time = 0.472005, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.242, Rules used = {3046, 2976, 2968, 3023, 2748, 2635, 8, 2633} \[ -\frac{2 a^2 (5 A+4 C) \sin ^3(c+d x)}{15 d}+\frac{2 a^2 (5 A+4 C) \sin (c+d x)}{5 d}+\frac{a^2 (10 A+9 C) \sin (c+d x) \cos ^3(c+d x)}{40 d}+\frac{a^2 (14 A+11 C) \sin (c+d x) \cos (c+d x)}{16 d}+\frac{1}{16} a^2 x (14 A+11 C)+\frac{C \sin (c+d x) \cos ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{15 d}+\frac{C \sin (c+d x) \cos ^3(c+d x) (a \cos (c+d x)+a)^2}{6 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2),x]

[Out]

(a^2*(14*A + 11*C)*x)/16 + (2*a^2*(5*A + 4*C)*Sin[c + d*x])/(5*d) + (a^2*(14*A + 11*C)*Cos[c + d*x]*Sin[c + d*
x])/(16*d) + (a^2*(10*A + 9*C)*Cos[c + d*x]^3*Sin[c + d*x])/(40*d) + (C*Cos[c + d*x]^3*(a + a*Cos[c + d*x])^2*
Sin[c + d*x])/(6*d) + (C*Cos[c + d*x]^3*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(15*d) - (2*a^2*(5*A + 4*C)*Sin
[c + d*x]^3)/(15*d)

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
+ 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp
[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b
, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-
1)] && NeQ[m + n + 2, 0]

Rule 2976

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])
^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*S
in[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&
NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rubi steps

\begin{align*} \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx &=\frac{C \cos ^3(c+d x) (a+a \cos (c+d x))^2 \sin (c+d x)}{6 d}+\frac{\int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (3 a (2 A+C)+2 a C \cos (c+d x)) \, dx}{6 a}\\ &=\frac{C \cos ^3(c+d x) (a+a \cos (c+d x))^2 \sin (c+d x)}{6 d}+\frac{C \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{15 d}+\frac{\int \cos ^2(c+d x) (a+a \cos (c+d x)) \left (3 a^2 (10 A+7 C)+3 a^2 (10 A+9 C) \cos (c+d x)\right ) \, dx}{30 a}\\ &=\frac{C \cos ^3(c+d x) (a+a \cos (c+d x))^2 \sin (c+d x)}{6 d}+\frac{C \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{15 d}+\frac{\int \cos ^2(c+d x) \left (3 a^3 (10 A+7 C)+\left (3 a^3 (10 A+7 C)+3 a^3 (10 A+9 C)\right ) \cos (c+d x)+3 a^3 (10 A+9 C) \cos ^2(c+d x)\right ) \, dx}{30 a}\\ &=\frac{a^2 (10 A+9 C) \cos ^3(c+d x) \sin (c+d x)}{40 d}+\frac{C \cos ^3(c+d x) (a+a \cos (c+d x))^2 \sin (c+d x)}{6 d}+\frac{C \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{15 d}+\frac{\int \cos ^2(c+d x) \left (15 a^3 (14 A+11 C)+48 a^3 (5 A+4 C) \cos (c+d x)\right ) \, dx}{120 a}\\ &=\frac{a^2 (10 A+9 C) \cos ^3(c+d x) \sin (c+d x)}{40 d}+\frac{C \cos ^3(c+d x) (a+a \cos (c+d x))^2 \sin (c+d x)}{6 d}+\frac{C \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{15 d}+\frac{1}{5} \left (2 a^2 (5 A+4 C)\right ) \int \cos ^3(c+d x) \, dx+\frac{1}{8} \left (a^2 (14 A+11 C)\right ) \int \cos ^2(c+d x) \, dx\\ &=\frac{a^2 (14 A+11 C) \cos (c+d x) \sin (c+d x)}{16 d}+\frac{a^2 (10 A+9 C) \cos ^3(c+d x) \sin (c+d x)}{40 d}+\frac{C \cos ^3(c+d x) (a+a \cos (c+d x))^2 \sin (c+d x)}{6 d}+\frac{C \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{15 d}+\frac{1}{16} \left (a^2 (14 A+11 C)\right ) \int 1 \, dx-\frac{\left (2 a^2 (5 A+4 C)\right ) \operatorname{Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (c+d x)\right )}{5 d}\\ &=\frac{1}{16} a^2 (14 A+11 C) x+\frac{2 a^2 (5 A+4 C) \sin (c+d x)}{5 d}+\frac{a^2 (14 A+11 C) \cos (c+d x) \sin (c+d x)}{16 d}+\frac{a^2 (10 A+9 C) \cos ^3(c+d x) \sin (c+d x)}{40 d}+\frac{C \cos ^3(c+d x) (a+a \cos (c+d x))^2 \sin (c+d x)}{6 d}+\frac{C \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{15 d}-\frac{2 a^2 (5 A+4 C) \sin ^3(c+d x)}{15 d}\\ \end{align*}

Mathematica [A]  time = 0.482144, size = 123, normalized size = 0.63 \[ \frac{a^2 (240 (6 A+5 C) \sin (c+d x)+15 (32 A+31 C) \sin (2 (c+d x))+160 A \sin (3 (c+d x))+30 A \sin (4 (c+d x))+840 A d x+200 C \sin (3 (c+d x))+75 C \sin (4 (c+d x))+24 C \sin (5 (c+d x))+5 C \sin (6 (c+d x))+420 c C+660 C d x)}{960 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2),x]

[Out]

(a^2*(420*c*C + 840*A*d*x + 660*C*d*x + 240*(6*A + 5*C)*Sin[c + d*x] + 15*(32*A + 31*C)*Sin[2*(c + d*x)] + 160
*A*Sin[3*(c + d*x)] + 200*C*Sin[3*(c + d*x)] + 30*A*Sin[4*(c + d*x)] + 75*C*Sin[4*(c + d*x)] + 24*C*Sin[5*(c +
 d*x)] + 5*C*Sin[6*(c + d*x)]))/(960*d)

________________________________________________________________________________________

Maple [A]  time = 0.056, size = 211, normalized size = 1.1 \begin{align*}{\frac{1}{d} \left ( A{a}^{2} \left ({\frac{\sin \left ( dx+c \right ) }{4} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{3}+{\frac{3\,\cos \left ( dx+c \right ) }{2}} \right ) }+{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) +{a}^{2}C \left ({\frac{\sin \left ( dx+c \right ) }{6} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{5}+{\frac{5\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{4}}+{\frac{15\,\cos \left ( dx+c \right ) }{8}} \right ) }+{\frac{5\,dx}{16}}+{\frac{5\,c}{16}} \right ) +{\frac{2\,A{a}^{2} \left ( 2+ \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) \sin \left ( dx+c \right ) }{3}}+{\frac{2\,{a}^{2}C\sin \left ( dx+c \right ) }{5} \left ({\frac{8}{3}}+ \left ( \cos \left ( dx+c \right ) \right ) ^{4}+{\frac{4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{3}} \right ) }+A{a}^{2} \left ({\frac{\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2}}+{\frac{dx}{2}}+{\frac{c}{2}} \right ) +{a}^{2}C \left ({\frac{\sin \left ( dx+c \right ) }{4} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{3}+{\frac{3\,\cos \left ( dx+c \right ) }{2}} \right ) }+{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x)

[Out]

1/d*(A*a^2*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c)+a^2*C*(1/6*(cos(d*x+c)^5+5/4*cos(d*x+c
)^3+15/8*cos(d*x+c))*sin(d*x+c)+5/16*d*x+5/16*c)+2/3*A*a^2*(2+cos(d*x+c)^2)*sin(d*x+c)+2/5*a^2*C*(8/3+cos(d*x+
c)^4+4/3*cos(d*x+c)^2)*sin(d*x+c)+A*a^2*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+a^2*C*(1/4*(cos(d*x+c)^3+3/2
*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c))

________________________________________________________________________________________

Maxima [A]  time = 1.13132, size = 275, normalized size = 1.42 \begin{align*} -\frac{640 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} A a^{2} - 30 \,{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{2} - 240 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{2} - 128 \,{\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} C a^{2} + 5 \,{\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 60 \, d x - 60 \, c - 9 \, \sin \left (4 \, d x + 4 \, c\right ) - 48 \, \sin \left (2 \, d x + 2 \, c\right )\right )} C a^{2} - 30 \,{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} C a^{2}}{960 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x, algorithm="maxima")

[Out]

-1/960*(640*(sin(d*x + c)^3 - 3*sin(d*x + c))*A*a^2 - 30*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c
))*A*a^2 - 240*(2*d*x + 2*c + sin(2*d*x + 2*c))*A*a^2 - 128*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x
 + c))*C*a^2 + 5*(4*sin(2*d*x + 2*c)^3 - 60*d*x - 60*c - 9*sin(4*d*x + 4*c) - 48*sin(2*d*x + 2*c))*C*a^2 - 30*
(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*C*a^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.44155, size = 315, normalized size = 1.62 \begin{align*} \frac{15 \,{\left (14 \, A + 11 \, C\right )} a^{2} d x +{\left (40 \, C a^{2} \cos \left (d x + c\right )^{5} + 96 \, C a^{2} \cos \left (d x + c\right )^{4} + 10 \,{\left (6 \, A + 11 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + 32 \,{\left (5 \, A + 4 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 15 \,{\left (14 \, A + 11 \, C\right )} a^{2} \cos \left (d x + c\right ) + 64 \,{\left (5 \, A + 4 \, C\right )} a^{2}\right )} \sin \left (d x + c\right )}{240 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x, algorithm="fricas")

[Out]

1/240*(15*(14*A + 11*C)*a^2*d*x + (40*C*a^2*cos(d*x + c)^5 + 96*C*a^2*cos(d*x + c)^4 + 10*(6*A + 11*C)*a^2*cos
(d*x + c)^3 + 32*(5*A + 4*C)*a^2*cos(d*x + c)^2 + 15*(14*A + 11*C)*a^2*cos(d*x + c) + 64*(5*A + 4*C)*a^2)*sin(
d*x + c))/d

________________________________________________________________________________________

Sympy [A]  time = 6.31262, size = 592, normalized size = 3.05 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+a*cos(d*x+c))**2*(A+C*cos(d*x+c)**2),x)

[Out]

Piecewise((3*A*a**2*x*sin(c + d*x)**4/8 + 3*A*a**2*x*sin(c + d*x)**2*cos(c + d*x)**2/4 + A*a**2*x*sin(c + d*x)
**2/2 + 3*A*a**2*x*cos(c + d*x)**4/8 + A*a**2*x*cos(c + d*x)**2/2 + 3*A*a**2*sin(c + d*x)**3*cos(c + d*x)/(8*d
) + 4*A*a**2*sin(c + d*x)**3/(3*d) + 5*A*a**2*sin(c + d*x)*cos(c + d*x)**3/(8*d) + 2*A*a**2*sin(c + d*x)*cos(c
 + d*x)**2/d + A*a**2*sin(c + d*x)*cos(c + d*x)/(2*d) + 5*C*a**2*x*sin(c + d*x)**6/16 + 15*C*a**2*x*sin(c + d*
x)**4*cos(c + d*x)**2/16 + 3*C*a**2*x*sin(c + d*x)**4/8 + 15*C*a**2*x*sin(c + d*x)**2*cos(c + d*x)**4/16 + 3*C
*a**2*x*sin(c + d*x)**2*cos(c + d*x)**2/4 + 5*C*a**2*x*cos(c + d*x)**6/16 + 3*C*a**2*x*cos(c + d*x)**4/8 + 5*C
*a**2*sin(c + d*x)**5*cos(c + d*x)/(16*d) + 16*C*a**2*sin(c + d*x)**5/(15*d) + 5*C*a**2*sin(c + d*x)**3*cos(c
+ d*x)**3/(6*d) + 8*C*a**2*sin(c + d*x)**3*cos(c + d*x)**2/(3*d) + 3*C*a**2*sin(c + d*x)**3*cos(c + d*x)/(8*d)
 + 11*C*a**2*sin(c + d*x)*cos(c + d*x)**5/(16*d) + 2*C*a**2*sin(c + d*x)*cos(c + d*x)**4/d + 5*C*a**2*sin(c +
d*x)*cos(c + d*x)**3/(8*d), Ne(d, 0)), (x*(A + C*cos(c)**2)*(a*cos(c) + a)**2*cos(c)**2, True))

________________________________________________________________________________________

Giac [A]  time = 1.16631, size = 213, normalized size = 1.1 \begin{align*} \frac{C a^{2} \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} + \frac{C a^{2} \sin \left (5 \, d x + 5 \, c\right )}{40 \, d} + \frac{1}{16} \,{\left (14 \, A a^{2} + 11 \, C a^{2}\right )} x + \frac{{\left (2 \, A a^{2} + 5 \, C a^{2}\right )} \sin \left (4 \, d x + 4 \, c\right )}{64 \, d} + \frac{{\left (4 \, A a^{2} + 5 \, C a^{2}\right )} \sin \left (3 \, d x + 3 \, c\right )}{24 \, d} + \frac{{\left (32 \, A a^{2} + 31 \, C a^{2}\right )} \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} + \frac{{\left (6 \, A a^{2} + 5 \, C a^{2}\right )} \sin \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x, algorithm="giac")

[Out]

1/192*C*a^2*sin(6*d*x + 6*c)/d + 1/40*C*a^2*sin(5*d*x + 5*c)/d + 1/16*(14*A*a^2 + 11*C*a^2)*x + 1/64*(2*A*a^2
+ 5*C*a^2)*sin(4*d*x + 4*c)/d + 1/24*(4*A*a^2 + 5*C*a^2)*sin(3*d*x + 3*c)/d + 1/64*(32*A*a^2 + 31*C*a^2)*sin(2
*d*x + 2*c)/d + 1/4*(6*A*a^2 + 5*C*a^2)*sin(d*x + c)/d